
Wi-Fi Advanced Stealth
BlackHat US, Las Vegas – August 2-3, 2006

Laurent BUTTI & Franck VEYSSET
France Telecom Division R&D

firstname dot lastname AT orange-ft dot com



Who Are We?
• Network security experts in R&D labs

– Working for France Telecom - Orange (major telco)
• Speakers at security-focused conferences

– ShmooCon, ToorCon, FIRST, Eurosec…

• Wi-Fi security focused speakers ;-)
• “Wi-Fi Security: What’s Next” – ToorCon 2003
• “Design and Implementation of a Wireless IDS” – ToorCon 

2004 and ShmooCon 2005
• “Wi-Fi Trickery, or How To Secure (?), Break (??) and Have 

Fun With Wi-Fi” – ShmooCon 2006



Beginning of 2006…
• We released 3 new tools at ShmooCon 2006

– Raw Fake AP: an enhanced Fake AP tool using RAW
injection for increased effectiveness

– Raw Glue AP: a Virtual AP catching every client in a 
virtual quarantine area

– Raw Covert: a tricky 802.11 covert channel using 
valid ACK frames

• All this stuff is available at
– http://rfakeap.tuxfamily.org



Now at BlackHat US…
• We will release

– Tricks to “hide” access points and stations (madwifi 
patches)

• From scanners and wireless IDS

– Raw Covert v2: new implementation and features

• We will also introduce our new ideas of research
– 802.11 fuzzing



Wi-Fi Stealth Tricks



802.11 Havoc!
• Since a couple of years, some wireless drivers are 

much more “flexible” than Prism2/2.5/3 based…
– Full RAW injection capabilities (possible to modify some critical 

fields like fragmentation, sequence number, BSS 
Timestamp…)

• Demonstrated by Raw Fake AP, Raw Glue AP and Raw Covert
– Tweaking the driver may also become attractive!

• Such drivers are
– Madwifi-{old|ng} for Atheros chipsets
– Prism54.org for Prism54 chipsets
– Realtek…

• New capabilities implies new risks to address…
– Especially for Wireless IDS vendors



Two Ways To Achieve Stealth…
• Possibilities are somewhat infinite…

– We decided to show only two ways that can be 
extended

• Tweaks in 802.11 drivers to implement a new 
“proprietary” protocol over 802.11 bands
– Madwifi patches

• Covert channel using 802.11 valid frames
– Raw Covert (as a proof-of-concept)



Hiding Ourselves



A Quick Reminder
• IEEE 802.11 standards define what 802.11 is

– At PHY and MAC layers
• Modulation, frequencies…
• State machine, frame fields…
• Security mechanisms

• To be Wi-Fi compliant, every implementation 
must comply with the 802.11 standard and be 
certified by the Wi-Fi Alliance certification 
process
– Usual stuff if you want to interoperate… 



Main Idea
• What would happen if you implement your own 

802.11 stack?!
– Stations that probe for AP will (probably) not see you…
– Wireless sniffers will (probably) not understand you, 

requiring manual inspection…
– Wireless IDS will (probably) not see you…

• Quite stealthy, no?
• What about your own (undetectable) personal AP?

– Sure the CSO won’t appreciate 
– Sure wardrivers won’t appreciate either (until now…)



Implementation
• Successfully tested on Atheros chipsets with a patched 
madwifi-ng driver
– Patched stations and access points will be able to see and 

associate themselves (they speak the same language) 
– But non patched stations will not see patched access points, 

and thus cannot associate to them

• Test bed
– Windows XP supplicant and NetStumbler
– Wireless Tools (iwlist) with

• hostap, (non patched) madwifi-ng, ipw2100, prism54



Live Demonstration
• First, we set up a “special” Access Point 

– one laptop with a patched madwifi-ng in master mode

• Then we scan for this AP with unpatched madwifi-ng
– iwlist (active scan facilities under *nix)
– Kismet (passive scanner under *nix)
– Netsumbler (active scanner under Windows)

• Then, we use our “special” client (patched drivers)
– Tada… it works…



Design Details



WTF Is This? Trivial Tweaks!
• What about changing FC field? ;-)
• What about a protocol version of 1? ;-)

– 802.11 is protocol version 0

• What about swapping types?
– Management (value 0)
– Control (value 1)
– Data (value 2)
– Reserved (value 3)

• What about swapping subtypes?
– Is this a Probe Request or a Probe Response? ;-)



Not So Trivial Tweaks

• Everything is possible… Make your own MAC 
protocol

• SoftMAC: A Flexible Wireless Research 
Platform
– http://systems.cs.colorado.edu/projects/softmac



Proto Tweak (1<>0)

Not testedOK !Madwifi-ng 
patched

Atheros

Not testedNot detectedIpw2100 1.1.3Centrino 2100

Not detectedNot detected2.4.1.30 (win)Atheros ar5211

Not testedNot detectedMadwifi-ng 
r1527

Atheros ar5212

Not testedNot detectedHostap 0.4.4Prism2.5

Not testedNot detectedPrism54 1.2Prism54

NetstumbleriwlistDriverChipset



About Kismet

• Kismet runs in monitor mode

– Will spot some of our AP
– …it depends on the tweak

– Or will report high « Discrd » packets 
number 





Raw Covert



Raw Covert (1/4)
• Covert channel

– In information theory, a covert channel is a communications 
channel that does a writing-between-the-lines form of 
communication.

– Source: Wikipedia, the free encyclopedia

• Writing between-the-lines
– Use valid frames to carry additional information
– Valid frames could be management, control or data frames

• This tool is ‘only’ an example! Possibilities are infinite!



Raw Covert (2/4)
• With 802.11, this may be performed by many means

– Using a proprietary protocol within valid or invalid frames
– It gives infinite possibilities thanks to RAW injection

• (Some) 802.11 frames are not considered as ‘malicious’
– Control frames like ACK are lightweight and non suspicious!

• Frame control (16 bits)
• Duration Field (16 bits)
• Receiver Address (48 bits)

– (Usually) not analyzed by wireless IDS
• No source nor BSSID addresses ;-)

• (Some) 802.11 drivers do not give back ACK frames in monitor 
mode (operated in the firmware: e.g. HostAP)
– Increasing stealthyness



Raw Covert (3/4)
• How it works?

– A client encodes the information and sends ACKs over the air
– A server listens for ACKs and tries to decode the information

• Basically, it uses a magic number in receiver address
– 2 bytes

• Basically, it encodes the covert channel in receiver 
address
– E.g. 4 bytes

• Several ACK frames are needed to send information



Raw Covert (4/4)
• Issues

– ACK frames can be missed, wireless is not a reliable 
medium! ;-)

– Detection may be performed (only) with anomaly detection

• Enhancements
– Basic remote shell and file transfer
– Tun/tap interface

• Possible enhancements for the covert channel
– Using invalid frames
– Using Information Elements in 802.11 frames (but could be 

easily detected)
– Using existing communications (clients and access points)



Raw Covert Enhancements (1/2)
• Invalid frames (in the 802.11 sense, i.e. proprietary 

frames)
– But would (?) be detected by any wireless IDS performing sanity 

check on every frame

• FCS invalid frames
– Should require driver/firmware modifications to inject bad FCS
– Wireless IDSs do not analyze such bad frames
– But should be detected with FCSerr statistics (even if harder to 

diagnose as a covert channel)



Raw Covert Enhancements (2/2)
• Invalid FCS monitoring

– Usually a bit is set by the firmware when a FCS is invalid

– Most drivers discard packets with bad FCS thanks to this 
information
• HAL_RXERR_CRC for madwifi
• rfmon_header->flags & 0x01 for prism54

– HostAP driver has a facility
• prism2_param interface monitor_allow_fcserr 1



Live Demonstration

• Live demo!

• Did you detect it? ;-)





802.11 Fuzzing



Fuzzing Concepts (1/2)

• Fuzzing
– Fuzz testing is a software testing technique. The 

basic idea is to attach the inputs of a program to a 
source of random data. If the program fails (for 
example, by crashing, or by failing built-in code 
assertions), then there are defects to correct.

– From Wikipedia, the free encyclopedia



Fuzzing Concepts (2/2)
• Fuzzing is not something really new…

– Remember ISIC?
• http://www.packetfactory.net/projects/ISIC/ 

• But it is still of interest…
– Recent work on Bluetooth Fuzzing (Pierre Betouin)

• http://www.secuobs.com/bss-0.6.tar.gz 

– Fuzzing with Scapy… (Phil Biondi)
• Plenty of cool things to do with scapy…



Fuzzing 802.11
• IEEE 802.11 amendments are more and more 

numerous
– 802.11e, 802.11i, 802.11k, 802.11r, 802.11s, 802.11w…

• Axiom
– Complexity  more code  more bugs  more 

vulnerabilities

• Guess what? IEEE 802.11 may be susceptible to 
fuzzing!



Fuzzing 802.11
• Not so trivial… keep in mind the 802.11 state machine

• Each step of the 802.11 protocol may be fuzzed
– Scanning process: probe requests and responses, beacons
– Authentication process: authentication requests and responses
– (Re-)Association process: (re-)association requests and 

responses

• Station’s associated state can be fuzzed only if
– Station is in state « Authenticated, Not Associated »
– (Optionally) There was an (re-)association request sent by the 

station to the access point were he was previously 
authenticated



Fuzzing 802.11
• Easiest part: fuzzing clients thanks to probe responses 

and beacons
– Listen for probe requests and send back appropriate probe 

response

• Fuzzing probe responses and beacons
– Inconsistent Information Elements (Type Length Value)

• E.g. a SSID Information Element with a length above 32 bytes
• E.g. a short 802.11 frame (incomplete SSID IE)

– Incomplete frame length…

• More on this soon…



Thanks for your attention

Tools, patches available at
http://rfakeap.tuxfamily.org



References
• Laurent Oudot’s wknock

– http://www.rstack.org/oudot/wknock/ 

• Pierre Betouin’s Bluetooth Stack Smasher
– http://www.secuobs.com/bss-0.6.tar.gz 

• scapy (Phil Biondi)
– http://www.secdev.org

• SoftMAC: A Flexible Wireless Research Platform
– http://systems.cs.colorado.edu/projects/softmac

• MadWiFi patches and rawcovert
– http://rfakeap.tuxfamily.org 


